» Click for full image
Today, Wall Street analysts are gathered at Intel headquarters in Santa Clara for the company’s 2019 Investor Meeting, which features executive keynotes by Intel CEO Bob Swan and business unit leaders. At the meeting, Dr. Murthy Renduchintala, Intel’s chief engineering officer and group president of the Technology, Systems Architecture and Client Group, announced that Intel will start shipping its volume 10nm client processor in June and shared first details on the company’s 7nm process technology. Renduchintala said Intel has redefined its product innovation model for the data-centric era of computing, which “requires workload-optimized platforms and effortless customer and developer innovation.” He shared expected performance gains resulting from a combination of technical innovations across six pillars – process and packaging, architecture, memory, interconnect, security and software – giving insight into the design and engineering model steering the company’s product development.
More: Intel Investor Relations Website
“While process and CPU leadership remain fundamentally important, an extraordinary rate of innovation is required across a combination of foundational building blocks that also include architecture, memory, interconnect, security and software, to take full advantage of the opportunities created by the explosion of data,” Renduchintala said. “Only Intel has the R&D, talent, world-class portfolio of technologies and intellectual property to deliver leadership products across the breadth of architectures and workloads required to meet the demands of the expanding data-centric market.”
10nm Process Technology: Intel’s first volume 10nm processor, a mobile PC platform code-named “Ice Lake,” will begin shipping in June. The Ice Lake platform will take full advantage of 10nm along with architecture innovations. It is expected to deliver approximately 3 times faster wireless speeds, 2 times faster video transcode speeds, 2 times faster graphics performance, and 2.5 to 3 times faster artificial intelligence (AI) performance over previous generation products1. As announced, Ice Lake-based devices from Intel OEM partners will be on shelves for the 2019 holiday season. Intel also plans to launch multiple 10nm products across the portfolio through 2019 and 2020, including additional CPUs for client and server, the Intel® Agilex™ family of FPGAs, the Intel® Nervana™ NNP-I (AI inference processor), a general-purpose GPU and the “Snow Ridge” 5G-ready network system-on-chip (SOC).
Building on a model proven with 14nm that included optimizations in 14+ nm and 14++ nm, the company will drive sustained process advancement between nodes and within a node, continuing to lead the scaling of process technology according to Moore’s Law. The company plans to effectively deliver performance and scaling at the beginning of a node, plus another performance improvement within the node through multiple intra-node optimizations within the technology generation.
7nm Status: Renduchintala provided first updates on Intel’s 7nm process technology that will deliver 2 times scaling and is expected to provide approximately 20 percent increase in performance per watt with a 4 times reduction in design rule complexity. It will mark the company’s first commercial use of extreme ultraviolet (EUV) lithography, a technology that will help drive scaling for multiple node generations.
The lead 7nm product is expected to be an Intel Xe architecture-based, general-purpose GPU for data center AI and high-performance computing. It will embody a heterogeneous approach to product construction using advanced packaging technology. On the heels ofIntel’s first discrete GPU coming in 2020, the 7nm general purpose GPU is expected to launch in 2021.
» Download all images (ZIP, 1 MB)
Heterogeneous Integration for Data-Centric Era: Renduchintala previewed new chip designs that leverage advanced 2D and 3D packaging technology to integrate multiple intellectual property (IP), each on its own optimized process technology, into a single package. The heterogeneous approach allows new process technologies to be leveraged earlier by interconnecting multiple smaller chiplets, and larger platforms to be built with unprecedented levels of performance when compared to non-monolithic alternatives.
Renduchintala unveiled the performance gains that resulted from innovative development of the client platform code-named “Lakefield”. The approach is symbolic of the strategic shift in the company’s design and engineering model that underpins Intel’s future product roadmaps. To meet customer specifications, a breadth of technical innovations including a hybrid CPU architecture and Foveros 3D packaging technology were used to meet always-on, always-connected and form-factor requirements while simultaneously delivering to power and performance targets. Lakefield is projected to deliver approximately 10 times SOC standby power improvement and 1.5 to 2 times active SOC power improvement relative to 14nm predecessors, 2 times graphics performance increases2, and 2 times reduction in printed-circuit-board (PCB) area, enabling OEMs to have more flexibility for thin and light form factor designs.
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.
1Ice Lake configuration disclosures:
Approximately 3x Ice Lake Wireless Speeds: 802.11ax 2×2 160MHz enables 2402Mbps maximum theoretical data rates, ~3X (2.8X) faster than standard 802.11ac 2×2 80MHz (867Mbps) as documented in IEEE 802.11 wireless standard specifications and require the use of similarly configured 802.11ax wireless network routers.
Approximately 2x Ice Lake Video Encode: Based on 4k HEVC to 4k HEVC transcode (8bit). Intel preproduction system, ICL 15w compared to WHL 15w.
Approximately 2x Ice Lake Graphics Performance: Workload: 3DMark11 v 1.0.132. Intel PreProduction ICL U4+2 15W Configuration (Assumptions):, Processor: Intel® Core™ i7 (ICL-U 4+2) PL1=15W TDP, 4C8T, Memory: 2x8GB LPDDR4-3733 2Rx8, Storage: Intel® 760p m.2 PCIe NVMe SSD with AHCI Microsoft driver, Display Resolution: 3840×2160 eDP Panel 12.5”, OS: Windows* 10 RS5-17763.316, Graphics driver: PROD-H-RELEASES_ICL-PV-2019-04-09-1006832. Vs config – Intel PreProduction WHL U4+2 15W Configuration (Measured), Processor: Intel® Core™ i7-8565U (WHL-U4+2) PL1=15W TDP, 4C8T, Turbo up to 4.6Ghz, Memory: 2x8GB DDR4-2400 2Rx8, Storage: Intel® 760p m.2 PCIe NVMe SSD with AHCI Microsoft driver, Display Resolution: 3840×2160 eDP Panel 12.5”, OS: Windows* 10 RS4-17134.112., Graphics driver: 100.6195
Approximately 2.5x-3x Ice Lake AI Performance: Workload: images per second using AIXPRT Community Preview 2 with Int8 precision on ResNet-50 and SSD-Mobilenet-v1 models. Intel preproduction system, ICL-U, PL1 15w, 4C/8T, Turbo TBD, Intel Gen11 Graphics, GFX driver preproduction, Memory 8GB LPDDR4X-3733, Storage Intel SSD Pro 760P 256GB, OS Microsoft Windows 10, RS5 Build 475, preprod bios. Vs. Config – HP spectre x360 13t 13-ap0038nr, Intel® Core™ i7-8565U, PL1 20w, 4C/8T, Turbo up to 4.6Ghz, Intel UHD Graphics 620, Gfx driver 26.20.100.6709, Memory 16GB DDR4-2400, Storage Intel SSD 760p 512GB, OS – Microsoft Windows 10 RS5 Build 475 Bios F.26.
2Lakefield configuration disclosures:
Approximately 10x Lakefield Standby SoC Power Improvement: Estimated or simulated as of April 2019 using Intel internal analysis or architecture simulation or modeling. Vs. Amber Lake.
Approximately 1.5x-2x Lakefield Active SoC Power Improvement: Estimated or simulated as of April 2019 using Intel internal analysis or architecture simulation or modeling. Workload: 1080p video playback. Vs. Amber Lake next-gen product.
Approximately 2x Lakefield Graphics Performance: Estimated or simulated as of April 2019 using Intel internal analysis or architecture simulation or modeling. Workload: GfxBENCH. LKF 5W & 7W Configuration (Assumptions):,Processor: LKF PL1=5W & 7W TDP, 5C5T, Memory: 2X4GB LPDDR4x – 4267MHz, Storage: Intel® 760p m.2 PCIe NVMe SSD; LKF Optimized Power configuration uses UFS, Display Resolution: 1920×1080 for Performance; 25×14 eDP 13.3” and 19×12 MIPI 8.0” for Power, OS: Windows* 10 RS5. Power policy set to AC/Balanced mode for all benchmarks except SYSmark 2014 SE which is measured in AC/BAPCo mode for Performance. Power policy set to DC/Balanced mode for power. All benchmarks run in Admin mode., Graphics driver: X.X Vs. Configuration Data: Intel® Core™ AML Y2+2 5W measurements: Processor: Intel® Core™ i7-8500Y processor, PL1=5.0W TDP, 2C4T, Turbo up to 4.2GHz/3.6GHz, Memory: 2x4GB LPDDR3-1866MHz, Storage: Intel® 760p m.2 PCIe NVMe SSD, Display Resolution: 1920×1080 for Performance; 25×14 eDP 13.3” for Power, OS: Windows 10 Build RS3 17134.112. SYSmark 2014 SE is measured in BAPCo power plan. Power policy set to DC/Balanced mode for power. All benchmarks run in Admin mode, Graphics driver: driver:whl.1006167-v2.
Forward-Looking Statements: Statements in this release that refer to future plans and expectations, including with respect to Intel’s future technologies and the expected benefits of such technologies, are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “goals,” “plans,” “believes,” “seeks,” “estimates,” “continues,” “may,” “will,” “would,” “should,” “could,” and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on estimates, forecasts, projections, uncertain events or assumptions, including statements relating to total addressable market (TAM) or market opportunity, future products and the expected availability and benefits of such products, and anticipated trends in our businesses or the markets relevant to them, also identify forward-looking statements. Such statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company’s expectations are set forth in Intel’s most recent earnings release dated April 25, 2019, which is included as an exhibit to Intel’s Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most recent reports on Forms 10-K and 10-Q. Copies of Intel’s Form 10-K, 10-Q and 8-K reports may be obtained by visiting our Investor Relations website at www.intc.com or the SEC’s website atwww.sec.gov.